2023 Precalculus Exam

- 1. Find $\cos(450^{\circ})$.
 - (a) **0** (b) 1 (c) -1 (d) 2 (e) $\frac{\sqrt{2}}{2}$

2. If $f_1(x) = x + 2$ and $f_2(x) = 3x^2 + 4x - 5$, which of the following equates to $g(x) = 3x^2 + 16x + 15$?

- (a) $g(x) = (f_1 \circ f_2)(x)$ (b) $g(x) = (f_2 \circ f_1)(x)$ (c) $g(x) = f_1(x) \cdot f_2(x)$ (d) $g(x) = f_2(x)/f_1(x)$ (e) None of the above.
- 3. Suppose that $f(x) = ax^2 + bx + c$ attains its minimum at (5,4). Which of the following could be f(x)?
 - (a) $f(x) = x^2 10x + 29$ (b) $f(x) = x^2 + 10x + 21$ (c) $f(x) = x^2 + 10x + 29$ (d) $f(x) = -x^2 - 10x + 21$ (e) $f(x) = -x^2 + 10x - 21$
- 4. Which of the following is the graph of $f(x) = -4x^2 40x 97$?

5. Solve for x:

$$\ln \left[(x-1)^2 \right] - \ln (2) = 1$$
(a) $x = \sqrt{1 \pm 2e}$ (b) $x = 1 \pm \sqrt{2e}$ (c) $x = 1 \pm 2e$ (d) $x = 1 \pm e\sqrt{2}$
(e) None of the above

- 6. Given the function $y = x^2 + 5x + 2$, what can be said about its roots?
 - (a) There are two real roots.
 - (b) There is only one real root.
 - (c) There are only two imaginary roots.
 - (d) There are no real roots.
 - (e) There is only one imaginary root.

7. What is
$$\frac{6-2i}{8+4i}$$
 simplified?
(a) $\frac{40-40i}{80}$ (b) $0.5-0.5i$ (c) $\frac{20i+25}{6}$ (d) $0.25i+4i$
(e) None of the above.

- 8. Assume that $0 < x < \pi$ and $\sin(x) = 3\cos(x)$. What is the value of $\sin(x)\cos(x)$?
 - (a) $\frac{1}{5}$ (b) $\frac{1}{6}$ (c) $\frac{3}{10}$ (d) $\frac{2}{9}$ (e) None of the above.
- 9. (Tiebreaker #1) Which of the following is an asymptote for the graph of

(a)
$$y = 1$$
 (b) $x = -2$ (c) $x = 3$ (d) $x = -4$
(e) None of the above.

- 10. Suppose that $\cos(\theta + \pi) = \sin(\theta)$. What is a possible value for θ that makes this equation true?
 - (a) 0 (b) π (c) $\pi/2$ (d) $3\pi/4$ (e) None of the above.
- 11. Solve for x:

(a)
$$\frac{23}{19}$$
 (b) 0 (c) $\frac{46}{37}$ (d) 5
(e) No solution exists.

12. Evaluate the expression:

$$\sin(\tan^{-1}(-1))$$

(a) 1 (b) $\frac{\sqrt{3}}{2}$ (c) $-\frac{\sqrt{2}}{2}$ (d) $-\frac{1}{2}$

13. A square has three corners at the points (1,3), (8,6) and (5,13). What are the coordinates of its fourth corner?

(b) (-2, 8)(c) (0,9)(d) (-2, 10)(e) (-1, 10)(a) (-1,9)

14. (Tiebreaker #2) Which of the following numbers is largest?

(a)
$$5^{\sqrt{5}}$$
 (b) $\sqrt{5}^5$ (c) $\sqrt{5}^{2\sqrt{5}}$ (d) $(2\sqrt{5})^{\sqrt{5}}$ (e) 50

15. What is the period of the function f(x)?

$$f(x) = \sqrt[3]{2023^{2023} - \pi} \sin\left(4\pi\left(x - \frac{5}{6}\right)\right)$$
(a) $\frac{12\pi}{5}$ (b) 2 (c) $\frac{3}{5}$ (d) $\frac{1}{2}$
(e) None of the above.

16. Suppose that

$$\begin{bmatrix} x & 2y \\ 3y & 4x \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

_

Solve for x and y.

(a)
$$x = 2$$
 and $y = 1$.
(b) $x = -\frac{7}{5}$ and $y = \frac{13}{10}$.
(c) $x = \frac{6}{29}$ and $y = \frac{13}{29}$.
(d) $x = \frac{3}{8}$ and $y = \frac{2}{6}$.

17. Suppose that

 $\cot(x) + \tan(x) > 0.$

What must be true of sin(x) and cos(x)?

(i) $\sin(x) > 0$ and $\cos(x) > 0$ (ii) $\sin(x) > 0$ and $\cos(x) < 0$ (iii) $\sin(x) < 0$ and $\cos(x) > 0$ (iv) $\sin(x) < 0$ and $\cos(x) < 0$ (a) (i) or (iv). (b) Only (iii). (c) Only (ii). (d) Only (i). (e) Only (iv).

18. Let $\triangle ABC$ be a right triangle such that $\angle A = 90^{\circ}$, and $\angle B = 30^{\circ}$. Compute

(a)
$$\frac{4}{3}$$
 (b) 4 (c) $\frac{1}{4}$ (d) 0 (e) -1

19. What is the length of the shortest possible path from the point (3,0) to the line y = 2x - 1? (a) $\sqrt{2}$ (c) $\sqrt{5}$ (b) 2 (d) 3 (e) $\sqrt{10}$ 20. (Tiebreaker #3): Let α be an acute angle. Compute the value of

$$S = \sqrt{\sin^4 \alpha + 4\cos^2 \alpha} + \sqrt{\cos^4 \alpha + 4\sin^2 \alpha}.$$
(b) 2 (c) 3 (d) 4

(e) The value depends on α .

(a) 1

- 21. How many 4-digit numbers have at least one 5 but no more than three 5's?
 - (a) 3167 (b) 3168 (c) 9000 (d) 2438 (e) None of the above.
- 22. Which of the following is the remainder when $x^3 + 2x^2 5x 10$ is divided by (x 2)?
 - (a) 0 (b) 2 (c) 4 (d) 6 (e) None of the above.
- 23. A triangle has angles 45° , 60° , and 75° . If the side opposite the 45° angle has length 2, what is the length of the side opposite the 60° angle?
 - (a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) $\sqrt{5}$ (d) $\sqrt{6}$ (e) $\sqrt{8}$

24. (Tiebreaker #4) What is the coefficient of x^2 when the binomial $\left(x^2 - \frac{1}{x}\right)^{10}$ is expanded and simplified?

- (a) 10 (b) 81 (c) -120 (d) 120 (e) 210
- 25. Simplify $\frac{\cos \theta + \sin \theta}{\cos \theta \sin \theta}$. (a) $\sec(2\theta) + \tan(2\theta)$ (b) $\cos(2\theta) - \sin(2\theta)$ (c) $\cos(2\theta) + \sin(2\theta)$ (d) $\cos^2(2\theta) + \sin^2(2\theta)$ (e) $\sec(2\theta) - \tan(2\theta)$
- 26. Let ABCD be a quadrilateral such that AB = 7, BC = 4, CD = 6, DA = 5, and $\angle B = 60^{\circ}$. What is $\cos(\angle D)$?
 - (a) $\sqrt{1 \frac{(61 \sqrt{37})^2}{5}}$ (b) $\frac{2}{5}$ (c) $\frac{\sqrt{21}}{5}$ (d) $\frac{\sqrt{4}}{5}$

(e) None of the above.

27. Suppose that u, o, and p are all positive integers. How many solutions are there to u + o + p = 23?

(a) 231 (b) 552 (c) 462 (d) 276 (e) 300

28. Consider the equation

$$(z^{2023/2} - i)(z^{2023/2} + i) - 2i^{2024} = 0.$$

How many distinct solutions does this equation have within the complex numbers?

(a) 0 (b) 2023 (c) 2024 (d) 2 (e) 1

29. Let $\triangle ABC$ be a right triangle such that BC = 2, $\angle A = 15^{\circ}$, and $\angle B = 90^{\circ}$. Find AB.

- (a) AB = 3 (b) $AB = 2 + 2\sqrt{3}$ (c) AB = 2 (d) $AB = 4 + 2\sqrt{3}$ (e) $AB = 2 2\sqrt{5}$
- 30. (Tiebreaker #5) Recall that given a nonzero complex number z, we can find r > 0 and $-\pi < \theta \le \pi$ such that $z = re^{i\theta}$. The *principal branch* of the complex logarithm of z is defined as

$$Log(z) = \ln r + i\theta$$

Suppose that
$$\text{Log}(z) = \frac{\pi}{2} - i\frac{\pi}{4}$$
. Find z.
(a) $\frac{e^{\pi/2}}{\sqrt{2}}(1-i)$ (b) 1 (c) $\frac{1}{\sqrt{5}}e^{\pi/6 - i\pi/12}$ (d) $e^{3\pi/2 - 3i\pi/4}$
(e) None of the above